996 research outputs found

    Confusability graphs for symmetric sets of quantum states

    Full text link
    For a set of quantum states generated by the action of a group, we consider the graph obtained by considering two group elements adjacent whenever the corresponding states are non-orthogonal. We analyze the structure of the connected components of the graph and show two applications to the optimal estimation of an unknown group action and to the search for decoherence free subspaces of quantum channels with symmetry.Comment: 7 pages, no figures, contribution to the Proceedings of the XXIX International Colloquium on Group-Theoretical Methods in Physics, August 22-26, Chern Institute of Mathematics, Tianjin, Chin

    Optimal quantum operations at zero energy cost

    Get PDF
    Quantum technologies are developing powerful tools to generate and manipulate coherent superpositions of different energy levels. Envisaging a new generation of energy-efficient quantum devices, here we explore how coherence can be manipulated without exchanging energy with the surrounding environment. We start from the task of converting a coherent superposition of energy eigenstates into another. We identify the optimal energy-preserving operations, both in the deterministic and in the probabilistic scenario. We then design a recursive protocol, wherein a branching sequence of energy-preserving filters increases the probability of success while reaching maximum fidelity at each iteration. Building on the recursive protocol, we construct efficient approximations of the optimal fidelity-probability trade-off, by taking coherent superpositions of the different branches generated by probabilistic filtering. The benefits of this construction are illustrated in applications to quantum metrology, quantum cloning, coherent state amplification, and ancilla-driven computation. Finally, we extend our results to transitions where the input state is generally mixed and we apply our findings to the task of purifying quantum coherence.Comment: 35 pages, 10 figures; published versio

    Efficient Quantum Compression for Ensembles of Identically Prepared Mixed States

    Get PDF
    We present one-shot compression protocols that optimally encode ensembles of NN identically prepared mixed states into O(logN)O(\log N) qubits. In contrast to the case of pure-state ensembles, we find that the number of encoding qubits drops down discontinuously as soon as a nonzero error is tolerated and the spectrum of the states is known with sufficient precision. For qubit ensembles, this feature leads to a 25% saving of memory space. Our compression protocols can be implemented efficiently on a quantum computer.Comment: 5+19 pages, 2 figures. Published versio

    Units of rotational information

    Full text link
    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.Comment: 25 pages + appendix, 7 figures, new results adde

    Quantum Metrology with Indefinite Causal Order

    Full text link
    We address the study of quantum metrology enhanced by indefinite causal order, demonstrating a quadratic advantage in the estimation of the product of two average displacements in a continuous variable system. We prove that no setup where the displacements are probed in a fixed order can have root-mean-square error vanishing faster than the Heisenberg limit 1/N, where N is the number of displacements contributing to the average. In stark contrast, we show that a setup that probes the displacements in a superposition of two alternative orders yields a root-mean-square error vanishing with super-Heisenberg scaling 1/N^2. This result opens up the study of new measurement setups where quantum processes are probed in an indefinite order, and suggests enhanced tests of the canonical commutation relations, with potential applications to quantum gravity.Comment: 11 pages, 3 figure

    Quantum Stopwatch: How To Store Time in a Quantum Memory

    Full text link
    Quantum mechanics imposes a fundamental tradeoff between the accuracy of time measurements and the size of the systems used as clocks. When the measurements of different time intervals are combined, the errors due to the finite clock size accumulate, resulting in an overall inaccuracy that grows with the complexity of the setup. Here we introduce a method that in principle eludes the accumulation of errors by coherently transferring information from a quantum clock to a quantum memory of the smallest possible size. Our method could be used to measure the total duration of a sequence of events with enhanced accuracy, and to reduce the amount of quantum communication needed to stabilize clocks in a quantum network.Comment: 10 + 5 pages, 3 figure
    corecore